Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice
by
Suzuki N, Nishii K, Okazaki T, Ikeno M.
Institute for Comprehensive Medical Science,
Fujita Health University, Japan.
J Biol Chem. 2006 Sep 8;281(36):26615-23.


ABSTRACT

Human artificial chromosomes (HACs) are alternative vectors that promise to overcome problematic transgene expression often occurring with conventional vectors in mammalian cells and bodies. We have successfully generated HACs by multimerization of a cloned long alphoid stretch in a human cell line, HT1080. Furthermore, we developed technologies for cloning large genomic regions into HACs by means of co-transfection of clones with the alphoid array and clones encoding the genomic region of interest. The purpose of this study was to investigate the mitotic and meiotic stability of such HACs in mouse cells and bodies. We transferred a circular HAC containing the guanosine triphosphate cyclohydrolase I gene (GCH1-HAC) and a linear HAC containing the human globin gene cluster (globin-HAC) from HT1080 cells into mouse embryonic stem (ES) cells by microcell-mediated chromosome transfer. The HACs were stably maintained in mouse ES cells for 3 months. GCH1-HACs in every ES cell line and globin-HACs in most ES cell lines maintained their structures without detectable rearrangement or acquisition of mouse genomic DNA except one globin-HAC in an ES cell line rearranged and acquired mouse-type centromeric sequences and long telomeres. Creation of chimeric mice using ES cells containing HAC and subsequent crossing showed that both the globin-HAC that had rearranged and acquired mouse type centromeric sequences/long telomeres and GCH1-HACs were retained in tissues of mice and transmitted to progeny. These results indicate that human artificial chromosomes constructed using the bottom-up strategy based on alphoid DNA are stable in mouse bodies and are transmissible.
HAC
Biohappiness
Liberal Eugenics
Depression genetics
Human self-domestication
Selecting potential children
Preimplantation genetic diagnosis
5-HTTPR polymorphism/depression
Francis Galton and contemporary eugenics
Gene therapy and performance enhancement
Transhumanism (H+): toward a Brave New World?
Human artificial chromosome with dystrophin gene
Gene therapy: the first two decades and the current state-of-the-art


reproductive-revolution.com
Refs

and further reading

HOME
Resources
Wireheading
BLTC Research
nootropic.com
Superhappiness?
Utopian Surgery?
The Good Drug Guide
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
MDMA: Utopian Pharmacology
Critique of Huxley's Brave New World